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Abstract

A number of algorithms have been developed to solve the prnoloif where to
place a limited number of sensors in a water distributionvogt such that public
health protection from accidental or intentional contamininjections is maxi-
mized. However, the ability of these algorithms to solvd-wearld, large-scale
sensor placement problems has yet to be demonstratedingxissearch exhibits
at least one of three fundamental flaws. First, most algostlare tested exclu-
sively on small-scale networks, leaving open the questfatalability. Second,
many algorithms are heuristic in nature and no effort has Ineade to establish
empirical or theoretical performance bounds. Third, thedeing assumptions
underlying some algorithms are physically unrealistitsing questions regarding
the utility of the resulting solutions in operational segis. We describe a model-
ing methodology that precisely captures the impact of coitant injection on a
distribution network. Using exact methods, we generategily optimal sensor
placements for networks containing up to roughly 3,000 fions using high-
performance computing platforms; the magnitude of the moaleently prevents
solution for larger networks. Next, we use a simple heurisised on GRASP,
local search, and path relinking to quickly generate sohgito even larger net-
works containing up to 12,000 junctions. Where solvableexiact methods, we
demonstrate that the heuristic yields solutions that avbally optimal. These
results conclusively demonstrate the practical appboadif this heuristic to solve
very large sensor placement problems under realistic rimgdassumptions, and
uniquely provides an empirical performance bound for tige@hm.

1 Introduction

Research on the problem of where to place sensors in watebdtgn networks to
minimize the damage incurred by the intentional injectibrcleemical and biological
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contaminants has intensified since the attacks of 9/11; uwheexability of these sys-
tems has become more widely appreciated. Accurate modéhe @ensor placement
optimization problem now exist, in addition to methodokgfor generating the asso-
ciated model parameters. However, while algorithms foregatng solutions to these
models have been introduced, their applicability to lasgale, real-world water distri-
bution networks is far from clear. First, most algorithme tasted exclusively on small-
scale networks, leaving open the question of scalabiliggoid, many algorithms are
heuristic in nature and no effort has been made to estabfigiirieal or theoretical
performance bounds. Third, the modeling assumptions bnadgisome algorithms are
physically unrealistic, raising questions regarding thktyi of the resulting solutions
in operational settings.

In this paper, we analyze the scalability of exact and haardgorithms for sensor
placement optimization under very realistic modeling agstions. We show that ex-
act integer programming methods can generate optimalisofuto moderately-sized
networks, while heuristic methods can quickly locate optisolutions to these same
networks, but are further capable of generating (possildbyagptimal) solutions to very
large networks containing up to 12,000 junctions. This is finrst demonstration of
truly scalable algorithm performance for heuristic seqdacement optimization.

The rest of this paper is organized as follows. We briefly samnwe and categorize
prior research on sensor placement optimizatio§®inin §3, we describe our formula-
tion of the sensor placement problem and relate it to the-kvedivnp-median problem.
Both exact and heuristic solution approaches are intratlircg4, while the empirical
performance of these methods is analyzed5n We discuss the implications of our
results in§6 and recap our primary conclusionsgin

2 Optimization for Sensor Placement: Background

Conceptually, the objective in a sensor placement optitizgroblem (SPOP) is sim-
ple: to place a limited number of sensors in a water distidoubetwork such that the
impact to public health due to the accidental or intentionjgction of contaminant is
minimized. The broader research community has yet to aatieemore specific, con-
crete definition that is widely (or even narrowly) agreedmpesearch typically differs
in terms of the precise definition of public health impacg #ssumed characteristics of
the deployed sensors, the fidelity of the contaminant tramsmmulation, and a host of
other details. However, existing formulations of the SP@R e usefully delineated
in terms of the fidelity with which water quality changes réigsig from an injection
is captured. Two broad categories in the current literatarebe identified, which we
refer to simply as static and dynamic.

In a static formulation of the SPOP, the impact of an attack at a padicaétwork
junction is_estimatetdy analyzing some combination of (1) flow directions and gelo
ities obtained via hydraulic simulation, (2) pipe lengtasd (3) junction demands. A
prominent example of a static SPOP formulation is descrilyelessler et al. [1998],
and is based on the notion of an auxiliary network. An auilizetwork is a directed
graphG = (V, E) where elements of the sét represent nodes, e.g., junctions and



tanks, of the distribution network. The edge #eis determined via analysis of hy-
draulic simulation outputs. For each pair of nodgesndv; for which there is flow
from v; to v; at any point in the simulation, a directed edge= (v;, v;) is added to
E. Edges ire = (v;,v;) € E are weighted by the average velocity fragto v, over
the course of the simulation. The auxiliary graph is usedomjunction with the net-
work pipe lengths to compute the shortest travel time betvadlepairs of vertices in
the network. The travel times are then used to estimate tiveonlewide impact of an
attacka atwv; if « is first detected by a sensor located at a vertexhe specific mea-
sure of health impact considered by Kessler et al. is thé Yotame of contaminated
water consumed before detection by at least one sensoreKessl. solve their static
formulation of the SPOP via heuristic solution of a corresfing set cover problem.

Berry et al. [2003] introduce a static SPOP formulation inakitthe objective is to
minimize the expected fraction of the population exposeananjected contaminant.
Here, hydraulic simulation results are used to compute d fiegv orientation for each
pipe in the network over a series pdistinct non-overlapping time intervals, referred
to as patterns. The formulation is time-independent, ihttiagel times are not consid-
ered; rather, a node; is protected against an attack at vertexf and only if there is
a sensor capable of detecting the flow betweeandv;. Watson et al. [2004] gener-
alize the Berry et al. formulation to consider a range ofroation objectives, some
of which account for travel times in a manner consistent Wit of the Kessler et al.
formulation. Both Berry et al. and Watson et al. solve thelitesy SPOP formulations
via exact solution of corresponding mixed-integer proggam

There are two key assumptions underlying any static SPORUlation, e.g., that of
Kessler et al. First, factors such as contaminant dilutoncentration level, and mode
of attack are not modeled. Rather, the static SPOP simpigdridneprojected presence
or absence of contaminant at various network points ovee,tamd assumes identi-
cal contaminant and water flow dynamics. Second, the congmhiransport model
is based on aggregated flow velocities, such that the truardigs of the underlying
flow are only approximated. Each of these assumptions repites potentially signif-
icant deviation from reality, and the impact of these appmations on the quality of
solutions to the SPOP are currently poorly understood.

In contrastdynamic SPOP formulations correct for each of the aforementioned de
ficiencies by preciselgharacterizing the impact of an attack at a given networktjon
on the rest of the network. First introduced by Ostfeld anldi@ans [2004], dynamic
SPOP formulations use detailed water quality simulatiGults to compute contami-
nant concentration time-series for each junction in thevagk. These time-series can
be used to determine the impact of an attacét v; if « is first detected by a sensor
located at a vertex;. In addition to accuracy improvements relative to theitista
counterparts, dynamic SPOP formulations have the addezhtatye that a full range
of attack types and sensor characteristics can be modedede anetwork response is
completely specified by contaminant level time-series ahe@twork junction; the
accuracy of the formulation is strictly limited by the acacy of the water quality sim-
ulation. Mirroring the earlier approach of Kessler et alstiéld and Salomons solve
their dynamic SPOP via solution of a corresponding set ¢ogegroblem. However,
the optimization objective is more realistic: to minimizeetvolume of polluted wa-
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ter possessing a concentration of pollutant higher thannénmaim hazard level. Most
recently, Berry et al. [2004] discuss a dynamic SPOP fortrarig&or minimizing the
expected volume of contaminated water consumed beforetaetewhich is expressed
and solved as a mixed-integer program.

Finally, we observe that the accuracy of dynamic SPOP faatiaris comes with
a price, specifically in the form of a very large number of comapionally intensive
water quality simulations; in contrast, static SPOP fomtiohs are based strictly on
comparatively cheap hydraulic simulations. We explors thsue further in botk5
andsg6.

3 Sensor Placement and the p-Median Problem

We now introduce the specific formulation of the dynamic SROG&d in our analysis.
Our objective is to minimize the total volume of contamirmtkteater consumed, at any
concentration level. We assume that we have a budgetadfsensors that can be
placed at any junction in a distribution network, each sersscapable of detecting any
concentration level of contaminant, and a general alarrmmediately raised when
contaminant is detected such that all further consumpsi@nevented. As discussed in
62, we observe that none of these assumptions are binding:zamide relaxed without
impacting the mathematical structure of our formulatione View the structure of a
water distribution network as an undirected gretphk= (V, E); elements of the sat’
represent junctions and sources, while elements of thé& sepresent pipes, pumps,
and valves.

Let A denote the set of attacks against which a sensor configaretiosisting of
p sensors is intended to protect. We assume attacks can dcaoy gertexv € V' of
the network, i.e, injection via backflow is possible. Eletseof « € A are quadru-
ples of the forme = (v,,t,,t7, X), wherev, € V is the attack vertex,; andt, are
the attack start and stop times, aiNdis the attack profile (e.g., arsenic injected at a
particular concentration at a given rate). For each attaek A, we use existing wa-
ter quality analysis software (e.g., as found in EPANET [oan, 1999]) to compute
the contaminant concentration at each node in the network fimet, to an arbitrary
pointt, > t; in the future. The results of such an analysis are expresststms of
concentration time-series for eachv; € V', with samples at regular (arbitrarily small)
intervals within[t,, ¢;]. Using the set of; in conjunction with demand profiles, it is
straightforward to compute the total volume of contamidataterd,(t) consumed
(network-wide) due to an attackat any given point at time € [t,, ). Next, lety,;
denote the earliest timeat which a hypothetical sensor at vertexcan detect con-
taminant due to an attack ~,; = t; if no contaminant ever reaches, and~,; can
be easily computed from;. Finally, we definel,; = d;(v,;), i.e., the total volume of
contaminant consumed due to an attadkthe attack is first detected by a sensovat

Given a setA of attack scenarios, a sgtof network vertices, and a séf; of impact
parameters, we take as our design objective the minimizafithe aggregate impact



over all attack scenarios, where

Al V]

[ = Z Z dajxaj (l)

i=a j=1

subject to the constraints

\4
Zxajzl,VaeA (2)
j=1
Laj S sj,Va € A,Vj eV (3)
\4
Zsj =D (4)
j=1
0<ux, <1,s;€{0,1},Vae A VjeV. (5)

A variables; (Constraint 5) indicates whether one of thavailable sensors is placed
on vertexv;, while Constraint 4 requires that a total of exagtlgensors be placed. A
variablez,; (Constraint 5) indicates whether an attaclk A is detected by a sensor
at vertexv;; Constraint 3 enforces the condition that detection cag ootur atv; if a
sensor is placed there. Finally, Constraint 2 requiresdéggction of each attacke A

be assigned to a single vertex in other words, there is always a first vertex in the
network to detect an attack. We observe that this formulasa@onceptually identical
to the dynamic SPOP introduced by Berry et al. [2004]. Ouiaveis more explicit, for
reasons discussed below, in thigt are defined for all possible combinations of attack
a € A and vertexy; € V — despite the fact that in practice it is typically not possib
for contaminant to flow between arbitragyandwv;.

Although not recognized at the time of its introduction, Berry et al. dynamic
SPOP formulation is identical to the well-knowamedian facility location problem
[Mirchandani and Francis, 1998]In the p-median problemp actual facilities (e.g.,
central warehouses) are to be locatedropotential sites such that the sum of distances
d.; between each of customers (e.g., retail outletg)and the nearest facility is
minimized. In contrasting the dynamic SPOP agnthedian problems, we observe
equivalence between (1) sensors and facilities, (2) adtaokl customers, and (3) attack
impacts and distances. While Berry et al. allow placemerdtafiost p sensorsp-
median formulations generally enforce placement ofpafiécilities; in practice, the
distinction is irrelevant unlegsapproaches the number of possible locations

4 Solution Techniquesfor the p-Median Problem

Equivalence with the»-median problem has an immediate bearing on our approach
to solving the dynamic SPOP, as it is now possible to dirdetigrage the extensive
literature on algorithms for solving themedian problem. Thg-median problem, e.g.,

as defined irg3, can in principle be solved directly as a mixed-integegpam (MIP).

Iwe thank Phil Meyers at Pacific Northwest National Labonafor identifying this relationship.



Further, optimal integer solutions frequently result biaxeng the integral constraints
and solving the corresponding pure linear program (LP) gleVand Swain, 1970].
However, due to the rapid growth in the number of constraintsvariables as problem
size increases, heuristics are often used in practice whalind with large problem
instances. We explore the scalability of LP and MIP appreadb solving dynamic
SPOPs ir§5.2.

The current state-of-the-art heuristic for fhenedian problem is a hybrid approach
recently introduced by Resende and Werneck, which we ddfMeThe core mech-
anism underlyindRW is a Greedy Randomized Adaptive Search Procedure (GRASP),
which is used to generate a set of high-quality solutionsgibiased greedy construc-
tion techniques. Steepest-descent hill-climbing is thegduto move from each of the
resulting solutions to a local optimum. Finally, path r&limg is used to further explore
the set of solutions lying at the intersection of the reagltocal optima. For a complete
description oRW, we refer the reader to [Resende and Werneck, 2004]. We rexible
application ofRW to solving dynamic SPOPs below §5.3, and contrast the resulting
performance with that of the previously described MIP applo

5 Empirical Results

We now describe the application, performance, and linoitegtiof MIP/LP solvers and
the RW heuristic for the dynamic SPOP for a number of large-scalal-world water
distribution networks. Our methodology and test networesdetailed ir5.1; results
for MIP/LP and heuristic approaches are describegbi@ ands5.3, respectively.

5.1 Methodology and Test Problems

Our primary objective is to analyze the ability of both MIP\&s and théRW heuristic

to locate optimal solutions to large-scale instances ofdgmeamic SPOP. For a given
test network, we define the set of attackas comprising four distinct possible attacks
at each junction, with start times = 0, 6, 12, and 18 (units are in hours). Following
Berry et al. [2004], each attack consists of a 5500 gallcacit{the storage capacity
of a typical water truck) in which contaminant is injectechatite equal to the outflow
rate from the attack vertex,. Consequently, the end-timte is a function of network
hydraulics. EPANET [Rossman, 1999] is used to perform waitity simulations for
each attack scenario, and the resulting concentrationdgnesr; are used to compute
the impact factorgl,; for each combination of € A andv; € V. Simulations begin
at timet, = 0 and proceed for a total a2 hours, i.e., over multiple iterations of the
typical demand cycle of 24 hours. As previously indicatad, selection of attack type
is arbitrary; the methodology can accommodate any injacticenario supported by
EPANET.

We perform empirical studies on a three real-world test néts; which we denote
SNL-1, SNL-2, and SNL-3. These networks respectively daraughly 400, 3000,
and 12000 junctions, and 450, 4000, and 14000 pipes. Thaladantities, exact di-
mensions, and pump/valve/tank/reservoir/well countsheté networks are withheld



for security purposes. We observe that these modelsaaral-pipes models; the com-
plexity is strictly due to size of the region served by thetipatar utilities from which
the models were obtained. SNL-3 is an order of magnitudetaitan any previously
considered in the sensor placement optimization liteeatand SNL-1 is an order of
magnitude larger than that typically investigated. Thgeat network considered in
most analyses, e.g., see [Kessler et al., 1998] and [OstfadidSalomons, 2004], is
Walski et al.'s “Anytown U.S.A.” network [et al., 1987], wth consists of 34 pipes, 16
nodes, two tanks, one pump, and one well. Berry et al. [200WEsa dynamic SPOP
via mixed-integer programming for on a network containiogghly 450 junctions and
600 pipes. Watson et al. [2004] examine static SPOP formonlsitalso in the context
of MIP solvers, using both the smaller 450 junction netwarkaddition to a larger
network with roughly 3500 junctions.

All experiments are conducted on a dual-processor 64-BEBEz AMD Opteron
workstation with 20 GB of RAM and 60GB of total (RAM plus swapgmory. Despite
the “workstation” label, this platform is far more experesiroughly USD 25K) and
powerful than a typical desktop machine, e.g., that fouraltgipical water utility.

Pre-processing, specifically execution of the water guainulations, requires
non-trivial amounts of computation. For SNL-1, SNL-2, andLS3, the respective
mean times required to perform water quality analysis fangls attack are approxi-
mately 0.75, 1.25, and 4 seconds using EPANET on our workstaGiven four pos-
sible attack times per junction, the run-times requiredttam the full suite of water
guality simulations range from under an hour for SNL-1 tor@eays for SNL-3.

5.2 Solution via Mixed-Integer Programming

Much of the prior research on algorithms for both the statd dynamic SPOP involve
heuristics, e.g., genetic algorithms. Although many arglotaim that their heuristics
are capable of locating optimal solutions to test netwaditkis, has never been demon-
strated in a rigorous fashion (e.g., via direct comparisath solutions obtained with
exact algorithms such as MIP solvers). The only analysegjuestact algorithms per-
formed to date have not involved heuristics in any capacityisequently, no perfor-
mance bounds on heuristic algorithms are currently aviald&erry et al. [2004] solved
a compact version of the MIP formulation described3for both (1) a set of attacks
at all junctions in a 470-vertex test network and (2) a settaicks on 100 junctions in
a~ 3,500 vertex test network. Both problems were solved in aenaf hours on a
powerful 32-bit workstation with only 4GB of RAM. Given theailability of a more
powerful computing platform, we now consider the scalapf MIP formulations of
the dynamic SPOP to both larger test networks and test nietweoith larger sets of
attack scenarios.

We use ILOG’$ AMPL/CPLEX 9.0 MIP solver, which currently represents the
state-of-the-art, to compute optimal solutions to the dyiwwaSPOP for each of our
test networks for a range of sensor budgets. The compughtiesults for specifip
values, selected to be realistic examples of what might Ipdogled in practice, are

2www.ilog.com.



Linear Program Statistics Performance Statistics

Test Instancg p | Num. Rows| Num. Columns| Num. Non-Zeros| Memory | Run-Time
SNL-1 10 185K 185K 550K 2GB 26 s.
SNL-2 20 8.5M 8.5M 25M 10GB 4093 s.
SNL-3 50 27.5M 27.5M 82M | > 30GB > 3 hrs.

Table 1: Computational results for MIP solution of each of st networks.

shown in Table 1. All MIPs for SNL-1 and SNL-2 solved withouthching, i.e., all
variables were integral in the root LP relaxation. As showrTable 1, the solution
times are reasonable, although it is clear that both menmadyan-time are a concern.
For example, if we consider 24 attack times per junction (@&reeach hour of a day),
then under the best-case assumption of at linear scaliead ,Ricorresponding to SNL-
2 is likely to be intractable. Although we were able to iniaolution of the root LP
for SNL-3, the memory requirements are prohibitive and grenance was dominated
by page swapping; minimal progress was made after 3 hoursnopatation, at which
point we terminated the run.

These experiments identify relatively precise limits oe #bility of exact algo-
rithms to solve dynamic SPOPs using modern, high-perfocaarorkstations. Specif-
ically, networks with roughly 12,000 junctions and 4 attéiches per junction appear
to reside at the boundary of what is solvable and what is ntithoafigh not described
here, similar boundaries are reached when allowing 24 lattaxes per junction for
3,000 junction test networks. Although there are cleartbrto scalability of the MIP
formulation described i3, we do not view the results presented in this section as
negative in any way. When taken in isolation, these res@taahstrate the remark-
able power of MIP approaches to solving dynamic SPOPSs; ner @ibproach has the
demonstrated ability to solve test networks as large as 3Nhéder the assumption of
multiple attack scenarios per junction. Further, the gbdf MIP approaches to iden-
tify optimal solutions to large test networks allows us t@anqtify — in absolute terms —
the performance of heuristics for the dynamic SPOP.

5.3 Solution viathe RW Heuristic

Next, we consider the performance of tRé/ heuristic on each of our test networks;
the results are reported in Table 2. On both SNL-1 and SNRA2 executes in negligi-
ble run-times and requires at most modest amounts of merfargher, the solutions
generated by the heuristic are provabptimal; the impact/ or the total number of
gallons of contaminated water consumed is equivalent toyielded by the exact MIP
solvers, as obtained during the course of the experimestsited int5.2. Although
not reported, we observe identical behavior on a range dfssdyudgets. Relative to
the MIP solver, results are obtained 15 to 30 times fastat,raquire no more than
1/10th of the total memory. However, it is important to ndtattthe heuristic cannot in
isolationprove the optimality of its result.

On SNL-3, theRW heuristic generates a final solution in roughly 29 minutds|ev
requiring 9 GB of RAM. In contrast, the MIP approach to sotythe same test network



| Performance Statistick

Test Instancd p | Average Consumptiof Memory | Run-Time
SNL-1 10 663.8 gallons 13MB 2s.
SNL-2 20 2914.3 gallong | 750 MB 130s.
SNL-3 50 2888.6 gallonsf 9.0 GB 29 m.

Table 2: Computational results for tR®V heuristic on each of our test networks. & *“
in the Average Consumption column indicates the solution is provably optimal; Average
Consumption is defined as the aggregate impact divided bypthkenumber of attacks.

consumed 30 GB of total memory in three hours, eventuallintaio find a solution
due to excessive swapping. Here, we cannot establish timaljty of the resulting
solution; rather, we can only extrapolate behavioral past@bserved on smaller data
sets, i.e., we conjecture the resulting solution is optimshis result illustrates the
ability of the heuristic to quickly locate solutions to vdeyge test networks. Further,
we observe that this is the largest test network solved mlagny algorithmic method;
the largest network considered previously involves rouydd800 junctions, with far
fewer attack scenarios.

In our current implementation &W, we use a relatively inefficient database stor-
age scheme, such that 24 of the 29 total minutes requiredve SdIL-3 are dedicated
to 1/0. In preliminary experimentation, we observe that arencompact representa-
tion allows us to reduce this time to less than 3 minutes. Thenary requirements
are significant, in thaRW cannot currently be executed on a 32-bit platform for net-
works of this size. As detailed in [Resende and Werneck, R@Bd large memory re-
guirements are due to pre-computations that yield sigmifinoan-time improvements.
Consequently, it is therefore possible to take the compteang approach and sacrifice
run-time for reduced memory requirements.

6 Discussion

At the time we initiated this research, exact solution teghes for both static and dy-
namic SPOP formulations were reaching limits on 3,000+tjondest networks, due
to either the 4GB limit on total memory imposed by 32-bit watgtions or excessive
computational times exhibited by MIP solvers. Our experitaéndicate that while the
availability of powerful 64-bit workstations boosts the gné&ude of problem we can
address via MIP solvers, the increase is not appreciabley Beal. [2004] report op-
timal solutions for 3,500 junction test networks under atiaa set of attack scenarios,
while we are able to locate optimal solutions to the samentstork under attack sce-
narios at all possible junctions. Larger test networks atecarrently soluble by MIP
approaches, even when expensive high-performance camyplatforms and solvers
are available. Consequently, scalability is a major camcespecially given that (1)
we expect to encounter real-world problems with at leasd@Djunctions and (2) we
would like to consider many more than 4 possible attack tipgggunction, in order to
prevent us from failing to account for rare but high-impaatrms. Parallel LP solution
techniques are one possible avenue to alleviate thesesjsmu is a route that we are
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actively pursuing. Finally, despite scalability issug¢dsiimportant to note that MIP
solvers do play a crucial role in sensor placement optingmain that they allow us
to benchmark heuristic performance in absolute terms. &\itilsuch benchmarking,
solution quality cannot be assessed — a situation that isceptable when deploying
systems dedicated to providing maximal public health mtita.

Heuristics, and in particular thewW algorithm, provide an alternative solution to
the scalability problem. Given the extreme difficulty ofdarscale test networks for
MIP solvers, we fully expected that parallel, high-perfamme computing would be
required to develop effective and scalable heuristics. él@n this was not the case;
the RW algorithm is capable of quickly locating optimal solutidnssmall-to-medium
sized test networks, and can solve 12,000 junction testarkswy Further, as discussed
in §5.3, the moderate memory requirements offiéalgorithm on large networks can
be mitigated by an increase in run-time, which is at worst esbdThe ability to solve
such networkswithout the use of high-performance computing platforms is due to a
combination of factors. Most prominently, however, is thetfthat the analysis of the
mathematical structure of the dynamic SPOP enabled us tgnée the correspon-
dence with thep-median problem and leverage heuristics that efficientiyl@k this
structure.

It is now clear that high-quality solutions to even very Rigstances of dynamic
SPOP can now be generated using heuristic methods. Althowtlier research is re-
guired to resolve specific issues relating to efficiency aadedbility, we believe the ma-
jor focus of future research on the dynamic SPOP should &hift basic algorithmic
techniques to exploration of more fundamental enginedssges, including solution
robustness [Carr et al., 2004], worst-case optimizatigeatlves, multiple-objective
analysis [Watson et al., 2004], and improvement of watehtyaansport simulations.
Finally, we observe that the major computational bottl&niacsolving the dynamic
SPOP using heuristic methods is execution of the requisatemguality simulations.
Parallelism via execution on a Beowulf cluster is the onlgrently practical approach
that can mitigate the impact of this bottleneck.

7 Conclusions

Researchers have made significant advances in the fidelityodels underlying sen-
sor placement optimization for protection against malisiinjection of contaminants
in water distribution networks. Any limitations in accuyaare now largely due to the
fidelity of the water quality simulations or invalid assumopis relating to the attack sce
nario, sensor behavior, or emergency response protoaolsontrast, algorithmic ad-
vances have lagged the increase in model fidelity. Scakaisla major concern, as all
algorithms for high-fidelity models have only been analyiretthe context of relatively

small test networks. We have illustrated that exact appresbased on mixed-integer
programming can locate optimal solutions to small-to-raedsized test networks, with
reasonable computational effort. However, these mettad®fscale to larger test net-
works. In contrast, state-of-the-art heuristics are ckgpablocating provably optimal

solutions to small-to-medium test networks in significasthorter run-times than ex-
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act approaches, and are able to obtain solutions to verg tagy networks. This is the
first instance in which (1) performance bounds are demaestifar heuristic methods
for sensor placement and (2) scalability of a heuristic metis conclusively demon-
strated. Consequently, our results serve as a yardsti¢itime research on algorithms
for sensor placement. In particular, we emphasize the si#gdsr moving beyond
“toy”-sized test networks and, in the case of heuristicsnadiestrating performance
relative to known optimal solutions.
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